Capacitor in Series Calculator
Input
Output
Understanding Capacitors in Series Calculator
When capacitors are connected in series, the total capacitance is less than any of the individual capacitances. The formula is:
\[C_{\text{total}} = \frac{1}{\left(\frac{1}{C_1} + \frac{1}{C_2} + \dots\right)}\]
Example Calculations
Example 1:
Given:
- \(C_1 = 4 \, \mu F\)
- \(C_2 = 6 \, \mu F\)
- \(C_3 = 12 \, \mu F\)
Calculation:
\(C_{\text{total}} = \frac{1}{\left(\frac{1}{4} + \frac{1}{6} + \frac{1}{12}\right)} = 2 \, \mu F\)
Example 2 with Unit Conversion:
Given:
- \(C_1 = 100 \, \text{nF}\)
- \(C_2 = 220 \, \text{nF}\)
Converted Values:
- \(C_1 = 100 \times 10^{-9} \, F = 0.1 \, \mu F\)
- \(C_2 = 220 \times 10^{-9} \, F = 0.22 \, \mu F\)
Calculation:
\(C_{\text{total}} = \frac{1}{\left(\frac{1}{0.1} + \frac{1}{0.22}\right)} \approx 0.068 \, \mu F\)